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Abstract. In this paper we investipated the electronic properties of a one-dimensional on-site
disordered model, which is constructed from a linear composition of two binary compounds
with random periods, having two hybridizing bands on every site. Using the improved Dean
method and the second-moment formulae, the effects of both disorder and hybridization on
the energy spectrum and the property of wavefunctions are studied. The results show that the
appearance of some special peaks in the spectrum is due to a particilar arrangement of atoms
that gccurs randomty and the effect of disorder on the energy spectrum decreases in the case
of large hybridization. The delecalization of the wavefunctions tends to be enhanced as the
hybridization increases, When the hybridization becomes iarger than a critical value, some
delocalized wavefunctions appear,

Recently, we [1] studied the electronic properties of a one-dimensional (1D} disordered

system (a linear composition of two binary compounds with random periods). The results

show that some wavefunctions remain delocalized. This is contrary to the general theorem

on the absence of such states in a 1D disordered system but is consistent with the conclusion

of some recent literature [2-7]. At the same time, in the spectrum some peaks appear which
. are caused by a particular arrangement of the atoms in the disordered case.

For many realistic systems, several different bands may be important in determining
electronic characteristics. Recently, Zhu and Huang [8] have used a multiband model to
study the effect of hybridization on the electronic properties in superlattices; they found
that hybridization can result in large non-parabolicities in the superlattice subbands. This
effect can account for some weak structure in the optical absorption spectrum. Leaviit
et al [9] have used the two-band modet to study the hole properties; the non-parabelic
subband structure obtained is capable of accurate predictions of the optical properties of
superlattices in an electric field. Leavitt {10] has also used a two-band model to study the
electronic states of semiconductor quantum wells and superlattices in an external potential;
the conduction subband energies, envelope functions, interband oscillator strength and
tunnelling resonance width obtained are highly consistent with the resuits found elsewhere.
At the same time, the electronic, phononic and magnetic properties in 1D disordered or
quasiperiodic two-band systems have also been studied by several workers. Dunlap et
al [11] have constructed a 1D quasiperiodic system with two hybridizing bands. By use
of the real-space renormalization group method, Chakrabarti et al [12] have studied the
electronic properties of a 1b quasiperiodic two-band system; it is found that the hybridization
cournteracts the effect of disorder in the 1D quasiperiodic two-band system. Buch et af [13]
have studied the density of states for a spatially disordered two-band system by the use of
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the single-chain approximation and the effective-medium approximation and have obtained
a qualitative condition for the transition between the extended states and the localized
states. It is also useful to extend the work in [1] to a two-band model to study the effect
of hybridization on such a disordered system. In the present paper, we propose a model
of a 1D disordered system by constructing a linear composition formed from alternating
connections of two binary compounds with random periods, having two hybridizing bands
on every site. ‘We attempt to investigate the competition between the effects of the disorder
and the hybridization on the nroperty of the wavefunctions. The work is also motivated
by current studies of a superlattice with antificial random thicknesses which exhibits some
unusual properties in experiments [14], The present 1D model can be used to mimic the
structure of these materials in the growth direction and to describe some principal features
of electronic states. Despite the complexity of the two-band model, the methods developed
for the one-band problems can be extended to this case.
We describe the system by the following tight-binding Hamiltonian:

H= Zeu(n)lnu}(rm[ + Zev(n)[nv){nul + Ztllnu)(mul + Ztg]nv)(mv]
+ Y vullnued {nv] + |nv) (nul) (1)

where €,(n) and €,{n) are the energy levels of orbital # and orbital v on site #, ¢ and #
are the hopping integrals between u and u and between v and v orbitals, respectively, and
v 18 the on-site u—v hybridization term.

Using the Wannier basis wavefunctions |i) = lfﬂ}, we can write the tight-binding
Hamiltonian using 2 x 2 matrices:

H= " EGOMiI+ D e+ 11+ — 11 V)

f=wp0 i=—n0

Eiy = [&® 7O i=[n o]
© [ y@) e 0 1

The chain is made up of altemnating connections of segments of two compounds A and
B. A is an atom array of two species a and b: abab.... B is an array acac..., where ¢ is

another atom species. The E(/) takes one of E,, E, and E, depending on the species of
the ith atom.

For a periodic chain, the atom arrangement is

where

abab...acac...abab...acac...
La B La Lp

where L, and Lg are the lengths of segments A and B, respectively, and the period is
La + Lg. By introducing period randomness, the lengths become random variables and
their fluctuations may be expressed by the stochastic functions

P(LA) =) paid(La—1i)

3)
P(Lp) =) paid(Lly — i)
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where

i I=0

8 =
® [0 1#0

and pa; and pp; are the probabilities of finding a segment of compound A and of compound
B, respectively, having / atoms. The length of a specific segment is randomly produced
from this distribution, and the whole lattice is formed by sequential connections of the
segments.

Once the lattice is constructed for given values of the parameters in equation (3), the
energy spectrum can be calculated by the Dean methed [153]. For 2 finite chain of N atoms,
the number of states with eigenvalues less than ¢ is the number of negative eigenvalues of

the U(/) matrices (i = 1,2, ..., N), and the U matrices are determined from the following
relations:
U@ =By - el 00— 10T i=23,....N O = Eq) — e @)

whgrc U¢i), E(z’) and tare 2 x 2 matrices, Tisa2x 2 unit matrix, and t is the transpose
of t. By the use of this theorem, the density of states is obtained and is shown in figure 1.
Figures I(a) and 1(b) display the results for periodic and random systems, respectively,
and figures 1(¢) and 1{d) the results for these systems with larger hybridization. It can be
seen that, for the random chains, there are some special peaks corresponding to the aa atom
clusters, which are absent in the periodic system. The effect of disorder on the spectrum
structure decreases at larger hybridization. If the hybridization increases, the separation of
the subbands corresponding to two levels on a site becomes larger. In the disordered case,
some peaks appear within the gap between these subbands.

In order to study the effect of hybridization on the property of eigenfunctions and to
investigate the relation between the second moment of the wavefunctions [17)] and the
hybridization, we use the improved Dean method [16] to calculate the eigenfunctions. If
&, denotes the amplitude at site n of a wavefunction with eigenvalue £;, and &; # 0, then

we choose [8;] = 1 and the other amplitudes can be obtained from the recurrence relations
By = ~1AF Biai) forn2kti> &)
and
A = 1/IEG) - Ef£185 1) for Nzi+121

Il

AL =lEN-EN A7 =1/[EQ) - El}

where AT is also a 2 x 2 matrix, and

= _[a (k)]
a; = .
* [a,_.(k)
By adding the subscript j to &, the normalized eigenfunction with eigenvalue E; can
be expressed as

N
%5} =) &li). (6)
I=l
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Figure 1. Energy spectrum of the 1D model (5000 atoms). (¢) The parameters in equation (3}
are
» { i fori =4
e ——
P 0 otherwise
and the parameters in equation (1) are €,, = —1.0, €gp = =2.0, €, = 1.0, €pu = 0.0, € = 2.0,
tew =15, h =~10, 4, = =05 and y; = y2 = y3 = 0.1, (&) The parameters in equation (3)
are
% fori =4
Pa =i = { 4 fori =3.5
0 otherwise

and the parameters in equation (1} are the same as those in (¢}, () The parameters in equation {3}
are the same as those in {#), and the parameters in equation (1) are the same as those in (a),
except for ¥ = 3, = y3 = 0.4, (4) The parameters in equation (3) are the same as those in
(), and the parameters in eguation (1) are the same as those in (¢).
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If we take the atom spacing as the unit of length, the second moment of the
wavefunctions [17] is defined as

[Zr !a,,i - (Z::éua’)zrz. ™

i=1

It is a measure of the extension of the wavefunction.

For a given E;, the second moment is numerically calculated for different hybridizations
and is shown in figure 2. The result shows that the second moment increases when the
hybridization increases. 'When the hybridization becomes larger than a critical value, the
second moment is invariable and almost becomes a constant, which is just that for the
extended states [18). We also calculate the second moment for other energy locations and
find that the same behaviour appears if the energy is located in the smooth part of the energy
spectrum. This means that some wavefunctions become delocalized, which is consistent with
the result of [13]. Since the hybridization enhances the tendency towards delocalization,
whereas the disorder tends to produce the opposite effect, the competition between them
determines the nature of the electronic eigenfunctions and the energy spectrum. We also
found that some wavefunctions remain localized when the hybridization increases.
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Figure 2. The second moment of wavefunctions for different hybridizations. The parameters
except for y are the same as those in figures 1(5) and 1(d) and £; = —1.499.

In summary, we have studied an on-site model of a speical random chain with two
hybridizing bands. The energy spectrum, the wavefunctions and their second moment are
numerically calculated. The results show that some special peaks appear in the spectrum
because of a particular arrangement of atoms in such a random chain, and the effect of
disorder on the electronic structure is counteracted by the effect of hybridization. When
the hybridization reaches a critical value, some wavefunctions become delocalized. This is
consistent with the conclusion of some recent literature on one-band models [1-7] as well
as on a two-band model [13].
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