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Abstract In this paper we investigated the elecvonic properries of a one-dimensional on-site 
disordered model. which is mnsvucted from a linear composition of two binary compounds 
with random periods. having two hybridizing bands on every site. Using the improved Dean 
method and the second-moment formulae, the effects of both disorder and hybridization on 
the energy s p e c ”  and the propeny of wavefunctions are studied. The re~ulls show that the 
appearance of some special peaks in the spgmm is due lo a particular anangemen1 of atoms 
that occurs randomly and the effecl of disorder on Ihe energy specmm decreases in the case 
of large hybrididon. The delocalization of the wavefunctions tends to be enhanced as Ihe 
hybridization increases. When the hybridization becomes larger lhan a critical value. some 
delocalized wavefunctions appear. 

Recently, we [I] studied the electronic propedes of a one-dimensional (ID) disordered 
system (a linear composition of two binary compounds with random pericds). The results 
show that some wavefunctions remain delocalized. This is contrary to the general theorem 
on the absence of such states in a I D  disordered system but is consistent with the conclusion 
of some recent literature [2-71. At the same time, in the specbum some peaks appear which 
are caused by a particular arrangement of the atoms in the disordered case. 

For many realistic systems, several different bands may be important in determining 
electronic characteristics. Recently, Zhu and Huang 181 have used a multiband model to 
study the effect of hybridization on the electronic properties in superlattices; they found 
that hybridization can result in large non-parabolicities in the superlattice subbands. This 
effect can account for some weak structure in the optical absorption spectrum. Leavin 
et al 191 have used the two-band model to study the hole properties; the non-parabolic 
subband structure obtained is capable of accurate predictions of the optical properties of 
superlattices in an electric field. Leavitt [IO] has also used a two-band model to study the 
electronic states of semiconductor quantum wells and superlattices in an external potential; 
the conduction subband energies, envelope functions, interband oscillator strength and 
tunnelling resonance width obtained are highly consistent with the results found elsewhere. 
At the same time, the electronic, phononic and magnetic properties in I D  disordered or 
quasiperiodic two-band systems have also been studied by several workers. Dunlap et 
a1 [ l l ]  have constructed a ID quasiperiodic system with two hybridizing~bands. By use 
of the real-space renormalization group method, Chakrabarti et al [I21 have studied the 
electronic properties of a 1 D quasiperiodic two-band system; it is found that the hybridization 
counteracts the effect of disorder in the ID quasiperiodic two-band system. Buch eral  [ 131 
have studied the density of states for a spatially disordered two-band system by the use of 
0953-8984/93/144029107.50 @ 1993 IOP Publishing Ltd 4029 
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the single-chain approximation and the effective-medium approximation and have obtained 
a qualitative condition for the transition between the extended states and the localized 
states. It is also useful to extend the work in [ l ]  to a two-band model to study the effect 
of hybridization on such a disordered system. In the present paper, we propose a model 
of a I D  disordered system by constructing a linear composition formed from alternating 
connections of two binary compounds with random periods, having two hybridizing bands 
on every site. We attempt to investigate the competition between the effects of the disorder 
and the hybridization on the nropelty of the wavefunctions. The work is also motivated 
by current studies of a superlattice with artificial random thicknesses which exhibits some 
unusual properties in experiments 1141. The present ID model can be used to mimic the 
structure of these materials in the growth direction and to describe some principal features 
of electronic states. Despite the complexity of the two-band model, the methods developed 
for the one-band problems can be extended to this case. 

Xiaoshuang Chen and Sh+e Xiong 

We describe the system by the following tight-binding Hamiltonian: 

+ C Y n ( l n u ) ( n v l  + Inv)(nul) (1) 
n 

where cu(n) and GLl(n) are the energy levels of orbital U and orbital U on site n, ti and fz 
are the hopping integrals between U and U and between U and U orbitals. respectively, and 
yn is the on-site U-U hybridization term. 

Using the Wannier basis wavefunctions li) = 1;;). we can write the tight-binding 
Hamiltonian using 2 x 2 matrices: 

m m 

H =  E(i)li)(il+ ~ ~ ~ i ) ( i + ~ ~ + ~ ~ i ) ( i - i ~ )  (2) 
i=-m ;=-m 

where 

The chain is made up of alternating connections of segments of two compounds A and 
B. A is an atom array of two species a and b abab.. .. B is an array acac.. ., where c is 
another atom species. The E(i) takes one of Ea, E b  and Ec, depending on the species of 
the ith atom. 

For a periodic chain, the atom arrangement is 

abab . . . acac . . . abab. . . acac . . . 
L* LB L A  LB 

where L A  and Lg are the lengths of segments A and B, respectively, and the period is 
LA + L B .  By introducing period randomness, the lengths become random variables and 
their fluctuations may be expressed by the stochastic functions 
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where 

1 = o  I:, l # O  
6(1) = 

and PA; and pei are the probabilities of finding a segment of compound A .and of compound 
B, respectively, having i atoms. The length of a specific segment is randomly produced 
from this distribution, and the whole lattice is formed by sequential connections of the 
segments. 

Once the lattice is constructed for.given values of the parameters in equation (3). the 
energy specmm can be calculated by the Dean method [E]. For a finite chain of N atoms, 
the number of states with eigenvalues less than E is the number of negative eigenvalues of 
the U( i )  matrices (i = I ,  2, . . . , N), and the U matrices are determined from the following 
relations: 

U(i)  = E ( i )  - d- i+U- ' ( i  - ~ ) i  i = 2,3,  . . . , N U(i) = E(i) - €i (4) 

where U(;), E(i) and i are 2 x 2 matrices, i is a 2 x 2 unit matrix, and f+ is the transpose 
of i. By the use of this theorem, the density of states is obtained and is shown in figure 1.  
Figures I(u) and l (b )  display the results for periodic and random systems, respectively, 
and figures l(c) and I(d) the results for these systems with larger hybridization. It can be 
seen that, for the random chains, there are some special peaks corresponding to the aa atom 
clusters, which are absent in the periodic system. The effect of disorder on the spect" 
structure decreases at larger hybridization. If the hybridization increases, the separation of 
the subbands corresponding to two levels on a site becomes larger. In the disordered case, 
some peaks appear within the gap between these subbands. 

In order to study the effect of hybridization on the properry of eigenfunctions and to 
investigate the relation between the second moment of the wavefunctions [I71 and the 
hybridization, we use the improved Dean method [I61 to calculate the eigenfunctions. If 
in denotes the amplitude at site n of a wavefunction with eigenvalue Ej ,  and & # 0, then 
we choose I&/ = 1 and the other amplitudes can be obtained from the recurrence relations 

(5) - + -  &; = -tAk*iak*+l, for n k & i > I 

and 

A: = I/[€({) - E j i i i A & , i ]  far N > i + 1 > 1 

A+, = I/[E(N) - ,cjii A; = i/[E(i) - E ~ ~ I  

where A: is also a 2 x 2 matrix, and 

By adding the subscript j to &, the normalized eigenfunction with eigenvalue E, can 
be expressed as 
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Figure 1. Energy specmm of the ID model (5WO atoms). (a)  Toe parameters in eqwlion (3) 
are 

I for i = 4 

i 0  otherwise 
PA! = Pa = 

and the parameters in equation ( I )  are eau = -1.0. cull = -2.0, e& = 1.0. cb,, = 0.0, c,. = 2.0. 
cn, = 1.5. 11 = -1.0. tx = -0.5 and yl = y2 = M = 0.1. (b) The parameters in equation (3) 
are 

PA( = mi = 
4 for i  = 4  

0 otherwise 

fori = 3.5 

and Le parameterS in equation ( I )  are the same as lhose in (U), (c) The parameters in equation (3) 
are the same as those in (U). and the parameters in equation ( I )  are the same as those in (a). 
except for YI = M = n = 0.4. ( d )  The parameters in equation (3) are the same as those in 
( b ) .  and the parameters in equation (1) are the same as those in (c). 
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If we take the atom spacing as the unit of length, the second moment of the 
wavefunctions [ 171 is  defined as 

It is a measure of the extension of the wavefunction. 
For a given E,, the second moment is numerically calculated for different hybridizations 

and is shown in figure 2. The result shows that the second moment increases when the 
hybridization increases. When the hybridization becomes larger than a critical value, the 
second moment is invariable and almost becomes a constant, which is just that for the 
extended states [le]. We also calculate the second moment for other energy locations and 
find that the same behaviour appears if the energy is located in the smooth part of the energy 
spectrum. This means that some wavefunctions become delocalized, which is consistent with 
the result of [13]. Since the hybridization enhances the tendency towards delocalization, 
whereas the disorder tends to produce the opposite effect, the competition between them 
determines the nature of the electronic eigenfunctions and the energy spectrum. We also 
found that some wavefunctions remain localized when the hybridization increases. 

0 . 1 2  , 

0.0 0.25 1 
HYBRIDIZATION 

5 

Figure 2. The second moment of wavefunctions for different hybridizations. The parameters 
except for y are the same as ihose in figures I(h) and I(d) and E, = -1.499. 

In summary, we have studied an on-site model of a speical random chain with two 
hybridizing bands. The energy spectrum, the wavefunctions and their second moment are 
numerically calculated. The results show that some special peaks appear in the spectrum 
because of a particular arrangement of atoms in such a random chain, and the effect of 
disorder on the electronic structure is counteracted by the effect of hybridization. When 
the hybridization reaches a critical value, some wavefunctions become delocalized. This is 
consistent with the conclusion of some recent literature on one-band models [1-7] as well 
as on a two-band model [IS]. 
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